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Abstract. Starting from the standard truncated Painlevé expansion and a multilinear variable separation
approach, a quite general variable separation solution of the (2+1)-dimensional (M +N)-component AKNS
(Ablowitz–Kaup–Newell–Segur) system is derived. In addition to the single-valued localized coherent soli-
ton excitations like dromions, breathers, instantons, peakons, and a previously revealed chaotic localized
solution, a new type of multi-valued (folded) localized excitation is obtained by introducing some appro-
priate lower-dimensional multiple valued functions. The folded phenomenon is quite universal in the real
natural world and possesses quite rich structures and abundant interaction properties.

PACS. 05.45.Yv Solitons – 02.30.Jr Partial differential equations – 02.30.Ik Integrable systems

1 Introduction

In the study of nonlinear science, soliton theory plays a
very important role and has been applied in almost all
the natural sciences especially in all the physical branches
such as fluid physics, condensed matter, biophysics,
plasma physics, nonlinear optics, quantum field theory,
particle physics, etc. [1]. Almost all the previous studies
of soliton theory especially in higher dimensions are re-
stricted to single-valued situations. However, real natural
phenomena are very complicated. In various cases, it is
even impossible to describe natural phenomena by single-
valued functions. For instance, in the real natural world,
there exist very complicated folded phenomena such as the
folded protein [2], folded brain and skin surface, and many
other kinds of folded biologic systems [3]. The simplest
multi-valued (folded) waves may be the bubbles on (or
under) a fluid surface. Various ocean waves are also folded
waves.

To study the complicated folded natural phenomena
is very difficult. At the present stage, it is impossible to
give a complete view of the complicated folded natural
phenomena. Similar to the single-valued case, the first im-
portant question we should and we can ask is: are there
any stable multi-valued (folded) localized excitations? For
convenience, we define the multi-valued localized excita-
tions as folded solitary waves. Furthermore, if the inter-
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actions among the folded solitary waves are completely
elastic, we call them foldons. As is known, the simplest
foldons are the so-called loop solitons [4], which can be
found in many (1+1)-dimensional integrable system [4]
and have been applied in some possible physical fields like
the string interaction with an external field [5], quantum
field theory [6], and particle physics [7]. However, finding
some folded localized excitations and/or foldons in higher-
dimensional physical models is still open. Moreover, when
saying that a model is integrable, one should emphasize
two important facts. The first one is that we should point
out in what special sense(s) is the model integrable. For
instance, we say a model is Painlevé integrable if it pos-
sesses the Painlevé property and a model is Lax or IST
(inverse scattering transformation) integrable if it has a
Lax pair and it can be solved by the IST approach. A
model integrable under some special cases may not be
integrable under other cases. For instance, some Lax in-
tegrable models may not be Painlevé integrable [8]. The
second fact is that for the general solution of a higher-
dimensional integrable model, say, a Painlevé integrable
model, there exist some characteristic, lower dimensional
arbitrary functions. That means any lower dimensional
multi-valued (folded) solutions can be used to construct
exact solutions of higher-dimensional integrable models.
In other words, any exotic behavior may propagate along
the characteristics.

Motivated by these reasons, we take a general (M+N)-
component (2+1)-dimensional AKNS system as a concrete
example to study some types of (2+1)-dimensional folded
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localized excitations and/or foldons. To emphasize the
importance of our present study, it is necessary to give
the detailed background of the present physical model
and review some previously obtained results, which are
all single-valued localized situations. In (1+1)-dimensions,
the AKNS system [9] is a most important physical model.
The (1+1)-dimensional AKNS system had been extended
in several different directions, say, the (1+1)-dimensional
(1+1)-component AKNS system had been extended to the
(N +N)-component (1+1)-dimensional AKNS system [10]
and (M + N)-component (1+1)-dimensional AKNS sys-
tem [11]. Several different types of (2+1)-dimensional in-
tegrable AKNS systems have also been obtained, say,
the DS (Davey–Stewartson) type system [12] and the
breaking soliton type system [13]. The (1+1)-dimensional
AKNS system can be obtained from the usual sym-
metry constraint of the KP (Kadomtsev–Petviashvili)
equation [10]. Recently, Lou and Hu have obtained a
general (M + N)-component (2+1)-dimensional AKNS
system,

ipit + pixx + piux = 0, i = 1, 2, ..., N, (1a)

−iqjt + qjxx + qjux = 0, j = 1, 2, ..., M, (1b)

uy +
N∑

i=1

M∑

j=1

aijpiqj = 0, (1c)

from the inner parameter dependent symmetry con-
straints of the KP equation [11]. When we take y = x,
N = M = 1, the system (1a) ∼ (1c) is reduced to the
usual (1+1)-dimensional AKNS system. If q is selected as
the complex conjugate and M = N = 1, then the sys-
tem (1a) ∼ (1c) can be considered as the asymmetric part
of the DS system. The so-called long-wave–short-wave in-
teraction model is linked with equations (1a) ∼ (1c) by
N = M = 1 by

p(x, y, t) = L(x, y + it, it) ≡ L(x′, y′, t′),

q(x, y, t) = S(x, y + it, it) ≡ S(x′, y′, t′).

The Maccari system [14] is also a special case of sys-
temé(1a) ∼ (1c) with M = N =2 and {q1 = p∗1, q2 = p∗2}.

The main purpose of the present work is to find
higher-dimensional multi-valued (folded) localized exci-
tations for the significant (2+1)-dimensional (M + N)-
component AKNS system. This paper is organized as
follows. In Section 2, we apply the standard truncated
Painlevé expansion and a multilinear variable separa-
tion approach (MLVSA) to solve the (2+1)-dimensional
(M + N)-component AKNS system and obtain its exact
excitation. In Section 3, we discuss some folded solitary
waves (FSWs) and foldons based on the results obtained
from the variable separation excitation for the (2+1)-
dimensional (M + N)-component AKNS system. A brief
summary and discussion is given in the last section.

2 The general variable separation solution
of (2+1)-dimensional (M+N)-component
AKNS system

To search for soliton excitations of a physical model, we
can use different kinds of methods. One of the powerful
methods is the multilinear variable separation approach
(MLVSA), which was recently presented and success-
fully applied in some (2+1)-dimensional models [15–18].
Now we use this method to investigate the (2+1)-
dimensional (M + N)-component AKNS system. To solve
system (1a) ∼ (1c), we first substitute the following trun-
cated Painlevé expansion into the original system

pi =
Pi

f
+ pi0, qj =

Qj

f
+ qj0, u =

2fx

f
+ u0 (2)

from which the model yields the following bilinear form:

(
iDt + D2

x + u0x

)
Pi · f + pi0D

2
xf · f = 0, (3a)

(−iDt + D2
x + u0x

)
Qj · f + qj0D

2
xf · f = 0, (3b)

DxDyf · f +
N∑

i=1

M∑

j=1

aij (PiQj + pi0fQj + qj0fPi) = 0,

(3c)
where Dt, Dx and Dy are the standard Hirota’s bilinear
operator and {pi0, qj0, u0} are arbitrary seed solutions of
the system (1a) ∼ (1c).

If we select the seed solution as

pi0 = qj0 = 0, u0 = u0(x, t), (4)

where u0 = u0(x, t) is an arbitrary function of x and t,
then the bilinear system (3a) ∼ (3c) can be solved by
using the variable separation ansatz

f = a1F (x, t) + a2G(y, t) + a3F (x, t)G(y, t), (5a)

Pi = F1i(x, t)G1i(y, t) exp (iR1i(x, t) + iS1i(y, t)) , (5b)

Qj = F2j(x, t)G2j(y, t) exp (−iR2j(x, t) − iS2j(y, t)) ,
(5c)

where the space variables x and y have been totally
separated into the functions {F, F1i, F2j , R1i, R2j} and
{G, G1i, G2j , S1i, S2j}, respectively.

Substituting the above ansatz into equa-
tions (3a) ∼ (3c) and using the fact that the space
variables x and y have been separated into different func-
tions {F, F1i, F2j , R1i, R2j} and {G, G1i, G2j , S1i, S2j},
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we can find that

G1i =
b1i

a1i(t)

√
Gy , G2j =

b2j

a2j(t)

√
Gy, (6a)

F1i = a1i(t)
√

Fx, F2j = a2j(t)
√

Fx, (6b)

S1i = B(t) + s1i(y), S2j = B(t) + s2j(y), (6c)

R1ix = R2jx ≡ R

= −
(
a2
2α0(t) + a1a2Ft + a2α2(t)F + α1(t)F 2

)

2a1a2Fx
,

(6d)

Gt =
G2

a2
1

(
a3
3α0(t) − a3α2(t) + α1(t)

)

+
G

a1
(2a3α0(t) − α2(t) + α0(t)) , (6e)

u0x =
1

4a2
1a

2
2F

2
x

(
a2
1a

2
2F

2
t + 2a1a2 (a2α0(t) + a2α2(t)F

+α1(t)F 2
)
Ft + a2

1a
2
2

(
F 2

xx − 2FxFxxx

+4 (Bt + Rt)F 2
x

)
+ a2

2α
2
2(t)F

2

+2a2α2(t)F
(
a2
2α0(t) + F 2α1(t)

)

+
(
a2
2α0(t) + α1(t)F 2

)2
)
, (6f)

where b1i and b2j are arbitrary constants and F (x, t),
a1i(t), a2j(t), s1i(y), s2j(y), B(t), α0(t), α1(t), α2(t) are
all arbitrary functions of the indicated variables with the
condition

N∑

i=1

M∑

j=1

aijb1ib2j exp
(
i (s1i(y) − s2j(y))

)
= 2a1a2. (7)

Hence, for the quantity ν ≡ ∑N
i=1

∑M
j=1 aijpiqj , we have

ν =
2a1a2FxGy

(a1F + a2G + a3FG)2
, (8)

with F being an arbitrary function of x and t and
G = G(y, t) being an arbitrary solution of the Riccati
equation (6e). After some slight modifications, one can
find that the expression (8) is valid for many (2+1)-
dimensional models like the DS equation, NNV system,
ANNV equation, BK equation, and the higher-order BK
equation, etc. [11,15–18]. We call all these models the
MLVSA solvable models. Because some arbitrary charac-
teristics, lower dimensional functions (like F ), have been
included in the “universal” formula (8), by selecting them
appropriately, abundant stable localized structures have

been revealed for these models. If we consider the bound-
ary (or initial) condition of the given localized excitations,
we can find that all the (2+1)-dimensional localized solu-
tions of these models are caused by the suitable boundary
(or initial) condition [19,20]. In other words, the richness
of the localized excitations of the (2+1)-dimensional mod-
els results from the fact that arbitrary exotic behaviors
can propagate along some special characteristics of the
models. In a previous study [21], we had pointed out that
some types of nonlocalized chaotic and periodic patterns
may exist also in the (2+1)-dimensional soliton system
because of some arbitrary characteristics functions that
can be included in the special variable separation solu-
tions. In the next section, we focus our attention on the
possible multi-valued (folded) localized excitations, FSWs
and foldons, constructed on the basis of the universal for-
mula (8) and the interaction properties of these folded
localized excitations for the (2+1)-dimensional (M + N)-
component AKNS system.

3 Folded localized excitations
for the (2+1)-dimensional
(M+N)-component AKNS system

In order to construct some kinds of interesting folded lo-
calized excitations and/or foldons for the quantity ν, we
first introduce some suitable multi-valued functions. For
example,

Gy =
M∑

j=1

Vj(η + cjt),

y = η +
M∑

j=1

Yj(η + cjt), (9)

where Vj and Yj are localized excitations with the prop-
erties Vj(±∞) = 0, Yj(±∞) = const. From equation (9),
one can know that η may be a multi-valued function in
some suitable regions of y by selecting the functions Yj

appropriately. Therefore, the function Gy, which is obvi-
ously an interaction solution of M localized excitations
since the property η |y→∞ → ∞, may be a multi-valued
function of y in these areas though it is a single-valued
function of η. Actually, most of the known multi-loop so-
lutions are the special situation of equation (9). Similarly,
we also treat the function F (x, t) in this way:

Fx =
N∑

j=1

Uj(ξ + wjt),

x = ξ +
N∑

j=1

Xj(ξ + wjt). (10)

Now, if all the arbitrary functions in the universal for-
mula (8) possess the forms similar to (9) with (10), then we
can get various (2+1)-dimensional FSWs and/or foldons.
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(a) (b)

(c) (d)

Fig. 1. Four typical folded solitary waves for the quantity ν determined by equation (8) at t = 0 together with (11–14)
and a1 = a2 = 1, a3 = 1/25 for (a) the “tent” shape, (b) the “worm” shape, (c) the “worm-dromion” shape, and (d) the
“worm-solitoff” shape folded solitary wave, respectively.

In Figure 1, four typical folded solitary waves are plot-
ted for the quantity ν determined by equation (8) with
the function selections

Fx = −sech2(ξ + wt),

F =
2 sinh(ξ + wt)
3 cosh(ξ + wt)

+
5 sinh(ξ + wt)
6 cosh3(ξ + wt)

+ 1.9,

x = ξ − 2.5 tanh(ξ + wt),

Gy = −sech2(η + ct), G = − sinh(η + ct)
cosh(η + ct)

, y = η.

(11)

Fx = −sech2(ξ + wt),

F =
2 sinh(ξ + wt)
3 cosh(ξ + wt)

+
5 sinh(ξ + wt)
6 cosh3(ξ + wt)

+ 8,

x = ξ − 2.5 tanh(ξ + wt),

Gy = −sech2(η + ct), G = − sinh(η + ct)
cosh(η + ct)

, y = η.

(12)

Fx = −10sech2(ξ + wt),

F = − 7 sinh(ξ + wt)
3 cosh(ξ + wt)

+
23 sinh(ξ + wt)
6 cosh3(ξ + wt)

+ 10,

x = ξ − 1.15 tanh(ξ + wt),

Gy = −sech2(η + ct),

G = − 5 sinh(η + ct)
3 cosh(η + ct)

− sinh(η + ct)
3 cosh3(η + ct)

,

y = η + tanh(η + ct). (13)

Fx = −sech2(ξ + wt),

F = − 7 sinh(ξ + wt)
30 cosh(ξ + wt)

+
23 sinh(ξ + wt)
60 cosh3(ξ + wt)

+ 2.03,

x = ξ − 1.15 tanh(ξ + wt),

Gy = −sech2(η + ct),

G = − 5 sinh(η + ct)
3 cosh(η + ct)

− sinh(η + ct)
3 cosh3(η + ct)

,

y = η + tanh(η + ct). (14)

Figure 2 shows an other five typical folded solitary
waves for the quantity ν determined by equation (8) with
the function selections (15–19). However, the parameters
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(a) (b)

(c) (d)

(e)

Fig. 2. Five typical folded solitary waves for the quantity ν determined by equation (8) at t = 0 with (15–19) and a1 = a2 = 1,
a3 = 1/25 are shown in (a), (b), (c), (d), and (e), respectively.

are chosen such that both F and G are multi-valued

Fx = −sech2(ξ + wt),

F = − sinh(ξ + wt)
15 cosh(ξ + wt)

+
7 sinh(ξ + wt)

15 cosh3(ξ + wt)
+ 1.9,

x = ξ − 1.4 tanh(ξ + wt),

Gy = −sech2(η + ct),

G =
2 sinh(η + ct)
3 cosh(η + ct)

+
5 sinh(η + ct)
6 cosh3(η + ct)

,

y = η − 2.5 tanh(η + ct). (15)

Fx = −sech2(ξ + wt),

F =
sinh(ξ + wt)

15 cosh(ξ + wt)
+

8 sinh(ξ + wt)
15 cosh3(ξ + wt)

+ 8,

x = ξ − 1.6 tanh(ξ + wt),

Gy = −sech2(η + ct),

G =
sinh(η + ct)

15 cosh(η + ct)
+

8 sinh(η + ct)
15 cosh3(η + ct)

,

y = η − 1.6 tanh(η + ct). (16)
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Fx = −sech2(ξ + wt),

F = − 7 sinh(ξ + wt)
30 cosh(ξ + wt)

+
23 sinh(ξ + wt)
60 cosh3(ξ + wt)

+ 4,

x = ξ − 1.15 tanh(ξ + wt),

Gy = −sech2(η + ct),

G = − 7 sinh(η + ct)
30 cosh(η + ct)

+
23 sinh(η + ct)
60 cosh3(η + ct)

,

y = η − 1.15 tanh(η + ct). (17)

Fx = sech2(ξ + wt),

x = ξ + 2 tanh(ξ + wt) + tanh2(ξ + wt)

− 5.5 tanh3(ξ + wt),

Gy = sech2(η + ct) + sech6(η + ct),

y = η + 2 tanh(η + ct) + tanh2(η + ct)

− 5.5 tanh3(η + ct). (18)

Fx = sech2(ξ + wt),

x = ξ + 2 tanh(ξ + wt) + tanh2(ξ + wt)

− 10 tanh3(ξ + wt),

Gy = sech2(η + ct) + sech6(η + ct),

y = η + 2 tanh(η + ct) + tanh2(η + ct)

− 10 tanh3(η + ct). (19)

4 Interaction properties of (2+1)-dimensional
localized excitations

Fortunately, owing to the arbitrary value of the function in
the expression (8), we have constructed quite rich folded
solitary waves. Now, one of the most important problems
which should be discussed is whether these types of local-
ized excitations are solitons. Particularly, are these FSWs
foldons? To find the answer, we have to study the inter-
action properties among these types of localized excita-
tions, then some concrete interaction example of FSWs
and foldons are given. In principle, following the general
ideas introduced in reference [19], one could investigate
the stability properties of the solutions presented in this
paper and their relevance as asymptotic states for suit-
able initial boundary value problems. However, here, we
study only the interaction behavior among the localized
solutions by studying the asymptotic property of the uni-
versal formula (8) because these formulas are valid for
more than one system.

4.1 Asymptotic behaviors of the localized excitations
produced from (8)

In general, if the function F and G are selected as localized
solitonic excitations with

F

∣∣∣∣∣t→∓∞ =
M∑

i=1

F∓
i , F∓

i ≡ Fi

(
x − cit + δ∓i

)
, (20)

G

∣∣∣∣∣∣
t→∓∞ =

N∑

j=1

G∓
j , G∓

j ≡ Gj

(
y − Cjt + ∆∓

j

)
, (21)

where {Fi, Gj} ∀i and j are localized functions, then the
physical quantity ν expressed by equation (8) delivers
M × N (2+1)-dimensional localized excitations with the
asymptotic behaviour

ν |t→∓∞ →
M∑

i=1

N∑

j=1

{
2a1a2F

∓
ixG∓

jy

(a1(F∓
i +f∓

i )+a2(G∓
j +g∓j )+a3(F∓

i +f∓
i )(G∓

j +g∓j ))2

}

≡
M∑

i=1

N∑

j=1

ν∓
ij

(
x − cit + δ∓i , y − Cjt + ∆∓

j

) ≡
M∑

i=1

N∑

j=1

ν∓
ij ,

(22)

where
f∓

i =
∑

j<i

Fj (∓∞) +
∑

j>i

Fj (±∞), (23)

g∓i =
∑

j<i

Gj (∓∞) +
∑

j>i

Gj (±∞), (24)

and we have assumed without loss of generality, Ci > Cj

and ci > cj if i > j.
It can be deduced from expression (22) that the ijth

localized excitation νij preserves its shape during the in-
teraction if

f+
i = f−

i , (25)

g+
j = g−j . (26)

Meanwhile, the phase shift of the ijth localized excita-
tion νij reads

δ+
i − δ−i (27)

in the x direction and

∆+
j − ∆−

j (28)

in the y direction.
The above discussions demonstrate that localized soli-

tonic excitations for the universal quantity ν can be con-
structed without difficulty via the (1+1)-dimensional lo-
calized excitations with the properties (20), (21), (25),
and (26). As a matter of fact, any localized solutions
(or their derivatives) with completely elastic (or not com-
pletely elastic or completely inelastic) interaction behav-
iors of any known (1+1)-dimensional integrable models
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(a)

(b)

Fig. 3. Pre- and post-interaction of two folded solitary waves
at time (a) t = −4.5, and (b) t = 4.5 for the quantity ν deter-
mined by equation (8) with the selections (29) and a1 = a2 = 1,
a3 = 1/25.

can be utilized to construct (2+1)-dimensional localized
solitonic solutions with completely elastic (f+

i = f−
i ,

g+
j = g−j for all i, j) (or not completely elastic or com-

pletely inelastic (f+
i �= f−

i , g+
j �= g−j at least for one

of i, j)) interaction properties. In order to see the interac-
tion behaviors among multi-valued (folded) localized ex-
citations more directly and visually, we investigate some
special examples by fixing the arbitrary functions F and G
in equation (8).

4.2 Example of the interaction between two FSWs
for (2+1)-dimensional (M+N)-component AKNS
system

Some examples of the single FSW have been discussed in
the last section and the general aspect of the related mul-
tiple FSWs and foldons has been given in Section 4.1. Here
we write and plot two more special two-FSW (Sect. 4.2)
and two-foldon (Sect.4.3) solutions for the universal quan-
tity ν.

Figure 3 is a pre- and post-interaction plot of the two
folded solitary waves for the quantity ν determined by

equation (8) with the selections

Fx = −12sech2(ξ) − 10sech2(ξ − t),

x = ξ − 1.15 tanh(ξ) − 1.15 tanh(ξ − t),

Gy = −sech2(η), y = η − 1.15 tanh(η). (29)

From Figures 3a and 3b, we know that the quantity ν (8)
with (29) expresses a special two-FSW solution in that the
interaction between them is inelastic. Actually, the com-
pletely elastic interaction condition (25) is not satisfied for
the solution (8) with (29).

4.3 Example of the interaction between two foldons
for (2+1)-dimensional (M+N)-component AKNS
system

According to the general discussions in Section 4.1, in or-
der to find foldons, the functions F and G must be selected
in such a way that the conditions (25–26) are satisfied.

Figure 4 shows evolution plots of two foldons for the
quantity ν determined by equation (8) with the selections

Fx = −4
5
sech2(ξ) − 1

2
sech2(ξ − t),

x = ξ − 1.5 tanh(ξ) − 1.5 tanh(ξ − t),

Gy = −sech2(η), y = η − 2 tanh(η). (30)

Since the completely elastic interaction condition
(25–26) is really satisfied for both the static excitation
and the moving one, the solution (8) with (30) is a gen-
uine two-foldon solution.

5 Summary

In summary, with the help of the standard truncated
Painlevé expansion and a multilinear variable separa-
tion approach, the (2+1)-dimensional (M+N)-component
AKNS system is solved. Abundant localized coherent soli-
ton structures of the solution (8) like dromions, lumps,
ring solitons, breathers, instantons, solitoffs, fractal and
chaotic localized excitations, etc., can be easily con-
structed by selecting arbitrary functions appropriately.
Except for the single-valued localized excitations, we
find a new type of multi-valued localized excitations,
i.e. folded solitary wave and/or foldon excitations for
the (2+1)-dimensional (M + N)-component AKNS sys-
tem. To our knowledge, the folded solitary wave and/or
foldon excitations for the (2+1)-dimensional (M + N)-
component AKNS system have not reported previously in
the literatures.

On the one hand, there are a large number of com-
plicated “folded” and multi-valued phenomena in the real
natural world. On the other hand, there is no good analyt-
ical way to treat these kinds of complicated phenomena.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Evolution plots of two foldons for the quantity ν determined by equation (8) with the selections (30) and a1 = a2 = 1,
a3 = 1/25 at time (a) t = −5.5, (b) t = −4.5, (c) t = −3.5, (d) t = −2, (e) t = 0, (f) t = 2, (g) t = 3.5, and (h) t = 5.5.
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This work is only a first attempt to find some types of
possible stable multi-valued localized excitations, folded
solitary waves and foldons, for some real physical mod-
els. Further study to find the localized excitations such
as new types of folded solitary waves, foldons and their
applications in reality is still necessary.

In references [19] and [22], the author pointed out that
the localized solutions of the DS equation, say, dromions,
can be remote controlled by choosing a suitable motion
of the boundaries. In reference [15], Tang and Lou also
pointed out that though the localized excitations such as
the dromions, lumps, ring solitons, peakons and foldons
proposed here possess zero boundary conditions for the
quantity ν, the boundary conditions for other quantities,
say, the mean flow for the DS model, are not identically
zero. The different selections of the arbitrary functions F
and G in (8) correspond to the different selections of the
boundary conditions of those fields (or potentials) with
nonzero boundary conditions and vice versa. That means,
in some sense, the dromions, foldons, and other types of
localized excitations for some physical quantities are re-
mote controlled by some other quantities (or potentials).
This fact hints that it is possible for one to observe the
dromions, foldons, and other types of localized excita-
tions from the systems governed by the MLVSA solvable
models by inputting suitable boundary conditions. For
foldons, the input boundaries may be selected as (1+1)-
dimensional loop solitons.

Since the excitation (8) is a “universal” formula for
many (2+1)-dimensional physical models which are widely
applied in many physical fields, we do believe that foldons
are useful in the studies on the complicated “folded” nat-
ural world. Both the “universal” formula and the general
(or special) foldons especially their possible real applica-
tions should be studied further.

The author would like to express his sincere thanks to referees
for their helpful advice and suggestions. This work supported
by the National Natural Science Foundation of China and the
Natural Science Foundation of Shandong Province.
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